How many artifacts do I have in my Jazz application repository?

One element of sizing the servers for the IBM Continuous Engineering (CE) solution is the current and projected data scale (along with data shape, user scale and workload). There are also recommended artifacts limits to keep an application performing well, such as 200K artifacts per DNG project area (as of v6.0.5 and noted here).

Whether you are trying to project future growth based on current sizing or ensure you are staying withing recommended limits, it is useful to know how many artifacts currently exist in a repository (or other “container” such as a project area). Each application provides different means of getting this information.

DOORS Next Generation (DNG)

Vaughn Rokosz has written a very good article on the impact of data shape on DNG performance. He provides several SQL and SPARQL queries to monitor artifact counts.  I won’t repeat them here but go to the link to minimally get the queries for total number of artifacts and versions in the repository and artifacts in the project areas.

Rational Team Concert (RTC), Rational Quality Manager (RQM) and Rational Model Manager (RMM)

Since these applications share a common storage service, they have similar means to get to the artifact counts. As a Jazz Admin you can run a repotools command or a web service.

Option 1: use repotools from command line
repotools-<context>.bat -listItemStats adminUserId=<jazz admin ID> adminPassword=<jazz admin password> repositoryURL=https://<server:port>/<context>logFile=<filename>

Option 2: use web service from browser

https://<server:port>/<context>/service/com.ibm.team.repository.migration.internal.stats.IDBTableSizeHttpService/

for <context>, use ccm, qm or am for Change Configuration Management, Quality Management or Architecture Management applications.

Note that both of these options can take some time to execute so be aware of possible load put on the server. I suggest running them during lighter load times. You can first run in a test environment with production like data to get a sense of timing and load.

Sample CCM artifact counts output

 

Sample QM artifact counts output

Starting with v6.0.3, administrators can monitor Jazz application metrics through the use of JMX MBeans. One of the MBeans is Item Count Details which contains similar information as provided by the listItemStats repotools command and IDBTableSizeHttpService web service. The Item Count Details MBean, once enabled can be viewed from RepoDebug or an enterprise monitoring tool capable of receiving published JMX inputs. This is the preferred method as you can capture that data over time, see trends, set alerts and thresholds and correlate with other monitored data.

CCMMBeans

Item Count Details MBean Objects

Attachment

Attachment Item details

Advertisements

Monitoring Jazz Applications using JMX MBeans

I recently published a blog post on jazz.net regarding our serviceability strategy and use of JMX MBeans to monitor Jazz Applications. If you’ve heard me speak on this topic, you know that I believe that having an monitoring strategy is a best practice and essentially imperative for any deployment involving our global configuration management capability. I would even extend that to deployment of RTC clustering as well.

Have a look at the blog post here:
Monitoring Jazz Applications using JMX MBeans

Guidance on adopting IBM CLM configuration management across the lifecycle

Earlier this year, Kathryn Fryer and I formed a workgroup to share experiences we’ve had with customers adopting the IBM CLM configuration management solution. The purpose being to elicit our shared recommended practices and guidance.  The workgroup consisted of representatives from Services, Support, Development, Test, Enablement and Product Management.

When forming your Configuration Management plan we recommend it consider the following key topics:

  • End to End Process Flow (context for use of configuration management)
  • Component Strategy
  • Stream Strategy
  • Baseline Strategy
  • Change Management (including DNG change sets)
  • Cross-stream Updates
  • Reviews and Approvals
  • Traceability, Link Validity and impact analysis
  • Naming, Tagging, Custom Attribute Conventions
  • Roles and Permissions
  • Configuration aware Reporting
  • Integrations (including non-CLM)
  • Communication Plan

Our aim is to create guidance that encompasses each of these topic areas to aid you in creation of your configuration management plan.

The first such guidance is now available on jazz.net.

Our focus has been on general adoption guidance along with component and stream strategies (both are critical at the outset and go hand in hand). Next focus areas are yet to be determined but could include finishing out the stream strategies (a couple more patterns remain) baselining strategy and change management.

We value your feedback on the guidance to date and input on areas to focus on next.

If you are at the IBM Watson IoT: Continuous Engineering Summit 2017 this week in New Orleans, be sure to say hello. Check out the talk I have with Ian Zimmerman on Friday at 2:30pm (Azalea 1): CM05 – Adopting Configuration Management: What You Need to Know!

Resource-intensive scenarios that can degrade CLM application performance

About a year ago, I was asked to begin considering what scenarios could drive load on a Collaborative Lifecycle Management (CLM) application server that could lead to outages or overall diminish the end user’s quality of service.  These aren’t necessarily long running scenarios but those that are known to use large amounts of system resources (e.g. high CPU, memory, heap usage).  As such, they have been known at times to degrade server performance and negatively impact user experience.

After reviewing a number of problem reports and escalations plus several discussions with Support, Services and Development resources, I identified scenarios for several of the applications.  We coined the term ‘expensive scenarios’ though our User Assistance team recently indicated that it could be misconstrued and a more apt name would be ‘resource-intensive’.

The first set of scenarios were published in v6.0.3 and documented as Known Expensive Scenarios.  The title will be changed in the next release to be Known Resource-intensive Scenarios.

For each of the identified scenarios, there is a description of what it is and under what conditions it could become resource-intensive.  Further, if there are any known best practices to avoid or mitigate the scenario from becoming resource-intensive, these too are captured.  These practices could include adjusting some application advanced properties that tunes the scenario behavior some or a change in work practices for when and how the scenario is invoked.

For example, importing a large number of requirements into DOORS Next Generation (DNG) can consume high resources as subsequent to the import, indexing of the newly imported artifacts occurs, which can block other user activity.  When the volume of imported data is high and/or several occur at once, system performance could degrade.  The wiki describes this scenario, identifies that there are some advanced properties that limit the number of concurrent ReqIF imports as well as the recommendation that these imports be kept under 10K requirements or be performed when the system is lightly loaded.

Knowing these scenarios help in a couple of ways.  First, as your process and tools teams define usage models for one of these applications, knowing that a particular usage pattern can potentially drive load on the server leading to degraded performance allows that usage model to be adjusted to avoid or reduce the likelihood of that occurring. Second, in situations of poor performance or worse, knowing if these scenarios are occurring could help identify root cause.

This latter case is helped by the logging of start and stop markers when a resource-intensive scenario occurs.  Each marker includes the Scenario ID (from Table 1) and a unique instance ID.

ScenarioStartStopTo get additional details when the scenario occurs and to aid in understanding its characteristics, advanced (verbose) logging can be enabled.  This can be done from the Serviceability page of an application’s admin UI.  Note the enabling verbose logging does not require a server restart.

ScenarioEnableAdvLogging

Now when a performance or system anomaly occurs and the application logs are reviewed, should it have occurred during a resource-intensive scenario, you may have a clue as to cause.  The additional logging should at a minimum include the data specified in Table 2.

ScenarioAdvLogging

As part of our serviceability improvements in v6.0.3, the CLM applications publish various JMX MBeans that may be collected and trended by enterprise monitoring tools such as IBM Monitoring, Splunk, LogicMonitor and others.  MBeans exist for several application metrics including counts/occurrences of resource-intensive scenarios.

Each MBean to be published must first be enabled from an application’s admin UI advanced properties page.

MBeansEnable

After doing so, the monitoring application can be configured to capture that data and displayed on a dashboard.

MBeansStats

Having a comprehensive enterprise monitoring strategy is essential for a well-managed CLM environment.  Tracking occurrences of these scenarios and correlating them against other environment measurements give administrators (and IBM Support) insight when troubleshooting anomalies or proactively evaluating environment performance.  In a subsequent post, I will talk further about what to monitor.

 

Adopting the IBM Continuous Engineering (CE) solution Configuration Management Capability

Adopting the IBM Continuous Engineering (CE) solution Configuration Management Capability is the title of a webinar that Kathryn Fryer and I recently presented.  We’ve been working with ‘new’ configuration management capability since it was in development prior to its launch in v6.0.  Adopting it takes careful consideration in order to successfully realize its benefits.

Objectives of the presentation

In version 6, the IBM CE solution added exciting new configuration management capabilities across the lifecycle, better enabling parallel development and strategic reuse. Simply enabling these capabilities won’t help you realize their potential; you must consider changes to your process and usage model to achieve results. This presentation describes current considerations, limitations and strategies for adopting configuration management.

  • Configuration management overview
  • Trade-offs and considerations – as of current release (6.0.2)
    • Primary factors
    • Reporting
    • OSLC integrations
    • Linking
    • QM utilities
    • Additional considerations
  • Enabling configuration management
  • Upgrade and migration
  • Adoption path and additional resources

If you are interested in this presentation, you can find the replay of the webinar here in the DOORS Enlightenment Series.

The slides are shared here.

Additional Reading

Scaling the Collaborative Lifecycle Management (CLM) solution across an enterprise

It’s critical that clients understand the implications when scaling your Jazz topology by adding additional servers for a given application. Ralph and I have been documenting these considerations and discussing them with customers over the last few years. We recently gave a webinar on this topic. See the following blog post for details.

rsjazz

Scaling the Collaborative Lifecycle Management (CLM) solution across an enterprise, is the title of the webinar Tim and I presented recently. Tim and I have worked on this content for a while and consider it important. Please also see  Tim’s related post Getting to a right-sized Jazz environment. There is additional reading below.

Objectives of the presentation

Scaling the v6.0.x Collaborative Lifecycle Management (CLM) solution across an enterprise often includes multiple instances of a given Jazz application. What multi-Jazz application options are available and what are the considerations?

  • What topologies and general multi-Jazz application options are available
  • How Jazz applications such as Change Configuration Management (CCM), Quality Management (QM) and Requirements Management (RM) relate to a Jazz Team Server (JTS)
  • The impact, advantages and disadvantages of multiple CLM Applications
  • What to consider when scaling and developing usage models adopting one of these deployment options to avoid surprises

If you…

View original post 73 more words

Getting to a right-sized Jazz environment

2015-05-24 14.05.27You’ve just made the decision to adopt one of the Jazz solutions from IBM.  Of course, being the conscientious and proactive IT professional that you are, you want to ensure that you deploy the solution to an environment that is performant and scalable.  Undoubtedly you begin scouring the IBM Knowledge Center and the latest System Requirements.  You’ll find some help and guidance on Deployment and Installation and even a reference to advanced information on the Deployment wiki.  Unlike the incongruous electric vehicle charging station in a no parking zone, you are looking for definitive guidance but come away scratching your head still unsure of how many servers are needed and how big they should be.

This is a common question I am often asked, especially lately.  I’ve been advising customers in this regard for several years now and thought it would be good to start capturing some of my thoughts.  As much as we’d like it to be a cut and dried process, it’s not.  This is an art not a science.

My aim here is to capture my thought process and some of the questions I ask and references I use to arrive at a recommendation.  Additionally, I’ll add in some useful tips and best practices.  If this proves useful, it will eventually move over to the Deployment wiki.

I find that the topology and sizing recommendations are similar regardless of whether the server is to be physical or virtual, on-prem or in the cloud, managed or otherwise.  These impact other aspects of your deployment architecture to be sure, but generally not the number of servers to include in your deployment or their size.

BUS30093From the outset, let me say that no matter what recommendation I or one of my colleagues gives you, it’s only a point in time recommendation based on the limited information given, the fidelity of which will increase over time.  You must monitor your Jazz solution environment.  In this way you can watch for trends to know when a given server is at capacity and needs to scale by increasing system resources, changing the distribution of applications in the topology and/or adding a new server.  See Monitoring: Where to Start? for some initial guidance.  There’s a lot going on in the monitoring area ranging from publishing additional information to existing monitor solutions or providing a lightweight appliance with some monitoring capabilities.  Keep an eye on work items 386672 and 390245.

enterpriseBefore we even talk about how many servers and their size, the other standard recommendation is to ensure you have a strategy for keeping the Public URI stable which maximizes your flexibility in changing your topology.  We’ve also spent a lot of time deriving standard topologies based on our knowledge of the solution, functional and performance testing, and our experience with customers.  Those topologies show a range in number of servers included.  The evaluation topology is really only useful for demonstrations.  The departmental topology is useful for a small proof of concept or sandbox environment for developing your processes and procedures and required configuration and customization.  For most production environments, a distributed enterprise topology is needed.

The tricky part is that the enterprise topology specifies a minimum of 8 servers to host just the Jazz-based applications, not counting the Reverse Proxy Server, Database Server, License Server, Directory Server or any of the servers required for non-Jazz applications (IBM or 3rd Party).  For ‘large’ deployments of 1000 users or more that seems reasonable.  What about smaller deployments of 100, 200, 300, etc. users?  Clearly 8+ servers is overkill and will be a deterrent to standing up an environment.  This is where some of the ‘art’ comes in.  I find more often than not, I am recommending a topology that is some where between the department and enterprise topologies.  In some cases, a federated topology is needed when a deployment has separate and independent Jazz instances but needs to provide a common view from a reporting perspective and/or for global configurations, in case of a product line strategy. The driving need for separate instances could be isolation, sizing, reduce exposure to failures, organizational boundaries, merger/acquisition, customer/supplier separation, etc.

The other part of the ‘art’ is recommending the sizing for a given server.  Here I make extensive use of all the performance testing that has been done.

4.1.1The CLM Sizing Strategy provides a comfortable range of concurrent users that a given Jazz application can support on a given sized server for a given workload.  Should your range of users be higher or lower, your server be bigger or smaller or your workload be more or less demanding, then you can expect your range to be different or to need a different sizing.  In other words, judge your sizing or expected range of users up or down based on how closely you match the test environment and workload used to produce the CLM Sizing Strategy.  Concurrent use can come from direct use by the Jazz users but also 3rd party integrations as well as build systems and scripts.  All such usage drives load so be sure to factor that into the sizing.  There are other factors such as isolating one group of users and projects from another, that would motivate you to have separate servers even if all those users could be supported on a single server.

Should your expected number of concurrent users be beyond the range for a given application, you’ll likely need an additional application server of that type.  For example, the CLM Sizing Strategy indicates a comfortable range of 400-600 concurrent users on a CCM (RTC) server if just being used for work items (tracking and planning functions).  If you expect to have 900 concurrent users, it’s a reasonable assumption that you’ll need two CCM servers.  As of v6.0.2, scaling a Jazz application to support higher loads involves adding an additional server, which the Jazz architecture easily supports.  Be aware though that there are some behavioral differences and limitations when working with multiple applications (of same type) in a given Jazz instance.  See Planning for multiple Jazz application server instances and its related topic links to get a sense of considerations to be aware of up front as you define your topology and supporting usage models.  Note that we are currently investigating a scalable and highly available clustered solution which would, in most cases, remove the need for distributing projects and users across multiple application servers and thus avoid the behavioral differences mentioned.  Follow this investigation in work item 381515.

This post doesn’t address other servers likely needed in your topology such as a Reverse Proxy, Jazz Authorization Server (which can be clustered), Content Caching Proxy and License Key Server Administration and Reporting tool.  Be sure to read up on those so you understand when/how they should be incorporated into your topology.  Additionally, many of the performance and sizing references I listed earlier include recommendations for various JVM settings.  Review those and others included in the complete set of Performance Datasheets and Sizing Guidelines.  It isn’t just critical to get the server sizing right but the JVM properly tuned for a given application.

To get to the crux of the primary question of number of servers and their size, I ask a number of questions.  Here’s a quick checklist of them.

  1. What Jazz applications are you deploying?
  2. What other IBM or 3rd party tools are you integrating with your Jazz applications?
  3. How many total and concurrent users by role and geography are you targeting and expect to have initially?  What is the projected adoption rate?
  4. What is the average latency from each of the remote locations?
  5. How much data (number of artifacts by domain) are you migrating into the environment? What is the projected growth rate?
  6. If adopting Rational Team Concert, which capabilities will you be using (tracking and planning, SCM, build)?
  7. What is your build strategy? frequency/volume?
  8. Do you have any hard boundaries needed between groups of users, e.g. organizational, customer/supplier, etc. such that these groups should be separated onto distinct servers?
  9. Do you anticipate adopting the global or local configuration management capability (released in v6.0)?
  10. What are your reporting needs? document generation vs. ad hoc? frequency? volume/size?

Most of these questions primarily allow me to get a sense of what applications are needed and what could contribute to load on the servers.  This helps me determine whether the sizing guidance from the previously mentioned performance reports need to be judged higher or lower and how many servers to recommend.  Other uses are to determine if some optimization strategies are needed (questions 4 and 7).

4.1.1As you answer these questions, document them and revisit them periodically to determine if the original assumptions, that led to a given recommended topology and size, have changed and thus necessitate a change in the deployment architecture.  Validate them too with a cohesive monitoring strategy to determine if the environment usage is growing slower/faster than expected or detect if a server is nearing capacity.  Another good best practice is to create a suite of tests to establish a baseline of response times for common day to day scenarios from each primary location.  As you make changes in the environment, e.g. server hardware, memory or cores, software versions, network optimizations, etc., rerun the tests to check the effect of the changes.  How you construct the tests can be as simple as a manual run of a scenario and a tool to monitor and measure network activity (e.g. Firebug).  Alternatively, you can automate the tests using a performance testing tool.  Our performance testing team has begun to capture their practices and strategies in a series of articles starting with Creating a performance simulation for Rational Team Concert using Rational Performance Tester.

In closing, the kind of guidance I’ve talked about often comes out in the context of a larger discussion which looks at the technical deployment architecture in a more wholistic perspective, taking into account several of the non-functional requirements for a deployment.  This discussion is typically in the form of a Deployment Workshop and covers many of the deployment best practices captured on the Deployment wiki.  These non-functional requirements can impact your topology and deployment strategy.  Take advantage of the resources on the wiki or engage IBM to conduct one of these workshops.